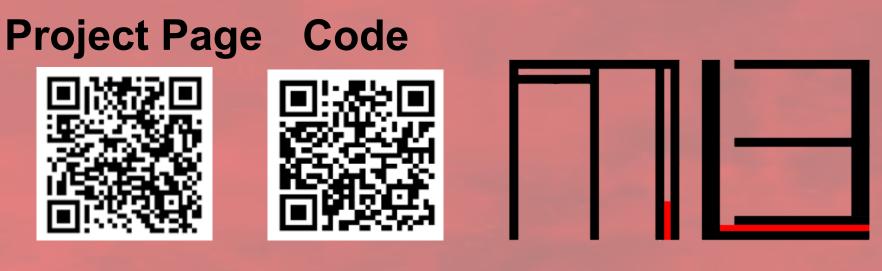
Personalized LLM Decoding via Contrasting Personal Preference

Hyungjune Bu¹, Chanjoo Jung¹, Minjae Kang², Jaehyung Kim¹

¹Yonsei University, ²Opt-Al Inc.



Overview

Background & Motivation

- LLM personalization is essential for personal assistants.
- Prompt-based: simple but limited
- Training-based: effective but costly & forgetful.
- PEFT helps, but decoding-time personalization remains underexplored.

Our Approach: CoPe

- Reward-guided decoding after PEFT using implicit reward (personalized vs. base model).
- Enhanced with DPO and synthetic negatives.

Key Contributions

- First decoding-based LLM personalization without external reward models.
- **Unified pipeline** that integrates PEFT, synthetic negatives, and DPO to maximize implicit reward.
- Implicit reward maximization via contrastive decoding
- **Model-agnostic**, compatible with various LLMs (LLaMA, Gemma, Qwen).
- Average gain of +10.57% ROUGE-L across 5 personalized generation tasks from LaMP and LongLaMP benchmarks.

Method: CoPe

User History Positives Iog π_{DPO} - α log π_{Base} fashion style beauty Synthetic Negatives Allaire Heisig's fashion... -0.045 Fashion Week Street Style... -0.045 Fashion Week Street Style... -0.088

Task-adapted base model (TAM)

- Base LLM $\pi_{\rm base}$ is adapted to the target task via PEFT (LoRA).
- Output: Task-aware but non-personalized model.

User-specific personalization (OPPU)

- Apply LoRA fine-tuning on π_{base} with user history H_{user} $\pi_{\text{user}} = \pi_{\text{base}} + \Delta_{\text{user}}$
- Output: Personalized model capturing the user's style and preferences.

Generate synthetic negatives

- Sample K outputs from the π_{base} for each input.
- Select the lowest-reward output:

$$\widetilde{y}^{i,*} = \arg\min_{y \in \{\widetilde{y}^{i,1}, \dots, \widetilde{y}^{i,K}\}} \sum_{t} r_{\mathsf{user}}(y_t),$$

where

$$r_{\text{user}}(y_t) = \log \frac{\pi_{\text{user}}(y_t \mid y_{< t})}{\pi_{\text{base}}(y_t \mid y_{< t})^{\alpha}},$$

Direct Preference Optimization (DPO)

• Train π_{user} to prefer user-aligned y^{pos} over negative y^{neg}

$$\mathcal{L}_{\mathrm{DPO}} = -\log\sigma \big(\beta \cdot [r_{\mathrm{user}}(y^{pos}) - r_{\mathrm{user}}(y^{neg})]\big)$$

Reward-guided decoding (CoPe)

• At inference, select next token maximizing $r_{\tt user}$ among plausible candidates:

$$y_t^* = \arg \max_{y_t \in \mathcal{V}_{\text{head}}^t} r_{\text{user}}(y_t).$$

• Ensures outputs align with implicit user reward without external reward models.

Empirical Validations

Main results

Methods	Abstract Generation		Review Writing		Topic Writing		News Headline		Scholarly Title	
	ROUGE-1	ROUGE-L	ROUGE-1	ROUGE-L	ROUGE-1	ROUGE-L	ROUGE-1	ROUGE-L	ROUGE-1	ROUGE-L
Base	0.341	0.186	0.287	0.126	0.246	0.105	0.119	0.105	0.409	0.324
RAG	0.347	0.205	0.272	0.128	0.243	0.115	0.141	0.124	0.425	0.347
PAG	0.344	0.186	0.256	0.125	0.262	0.107	0.118	0.102	0.372	0.289
TAM	0.357	0.204	0.289	0.122	0.253	0.107	0.200	0.179	0.514	0.456
OPPU	0.378	0.218	0.319	0.134	0.278	0.112	0.203	0.182	0.510	0.454
CoPE (Ours)	0.392	0.239	0.335	0.146	0.281	0.120	0.205	0.184	0.519	0.461

Qualitative example

News Headline					
Query	Generate a headline for the following article: When we first saw Michael H. Rohde's photography series \"Below The Floor\" on Design-Milk.com, we were floored. (Pun intended				
User Answer	Michael H. Rohde, German Photographer, Shoots Breathtaking Series 'Below The Floor' (PHOTOS)				
TAM	Craft Of The Day: Create A Floating Photo Gallery With This DIY				
OPPU	'Below The Floor' Photography <mark>Series</mark> Reveals The Hidden Beauty In The Places We Walk On				
CoPe (ours)	'Below The Floor' Photography <mark>Series</mark> By <mark>Michael H. Rohde</mark> Is A Whole New Perspective On The World (PHOTOS)				

Ablation study

						_	
	CD DPO		Abstract (Generation	News Headline		
	CD	Dro	ROUGE-1	ROUGE-L	ROUGE-1	ROUGE-L	
OPPU	Х	Х	0.378	0.218	0.203	0.181	
	1	X	0.385	0.232	0.204	0.183	
	X	✓	0.386	0.230	0.203	0.182	
CoPE (Ours)	/	/	0.392	0.239	0.205	0.184	

Compatibility of CoPe

Methods	LLaMA 3.1-8B	Gemma 3-4B	Qwen 2.5-1.5B
Base	0.172	0.135	0.130
RAG	0.183	0.170	0.128
PAG	0.183	0.169	0.130
TAM	0.198	0.181	0.150
OPPU	0.202	0.194	0.163
CoPE (Ours)	0.261	0.237	0.233